

Model the Partial-Products Method

Materials	array grid	(Math	Masters,	pp.	416	and	417

☐ base-10 blocks

Directions

- Draw a line around rows and columns on the grid to model each problem.
- ♦ Cover the array you made using as few base-10 blocks as possible.
- Solve using the partial-products method.
- ♦ Then match each part of the array with a partial product.
- Record the solution, filling in the sentences to match the blocks you used.
- **1.** 6 * 23 = _____

In each of		Write the problem showing
6 rows	longs, so there are cubes.	the partial products.
there are		
	cubes, so there are cubes.	
	There are cubes in all.	

2. 26 * 18 = _____

In each		Write the problem showing
of 20 rows	longs, so there are cubes.	the partial products.
there are		
	cubes, so there are cubes	·
In each		
of 6 rows there are	longs, so there are cubes.	
	cubes, so there are cubes	
	There are cubes in all.	

A Mental Calculation Strategy

When you multiply a number that ends in 9, you can simplify the calculation by changing it into an easier problem. Then adjust the result.

Example 1: 2 * 99 = ?

- ♦ Change 2 * 99 into 2 * 100.
- ♦ Find the answer: 2 * 100 = 200
- ◆ Ask: How is the answer to 2 * 100 different from the answer to 2 * 99?
 100 is 1 more than 99, and you multiplied by 2.
 So 200 is 2 more than the answer to 2 * 99.
- ◆ Adjust the answer to 2 * 100 to find the answer to 2 * 99:
 200 2 = 198. So 2 * 99 = 198.

Example 2: 3 * 149 = ?

- ◆ Change 3 * 149 into 3 * 150.
- Find the answer: 3 * 150 = (3 * 100) + (3 * 50) = 450.
- ◆ Ask: How is the answer to 3 * 150 different from the answer to 3 * 149?
 150 is 1 more than 149, and you multiplied by 3.
 So 450 is 3 more than the answer to 3 * 149.
- Adjust: 450 3 = 447. So 3 * 149 = 447.

Use this strategy to calculate these products mentally.